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Abstract: We implemented a completely label-free biophysical (morphometric and optical)
property characterization of living monocytes in flow, using measurements obtained from two
coherent imaging techniques: a pure light scattering approach to obtain an optical signature
(OS) of cells, and a digital holography (DH) approach to achieve optical cell reconstructions
in flow. A precise 3D cell alignment platform, taking advantage of viscoelastic fluid
properties and microfluidic channel geometry, was used to investigate the OS of cells to
achieve their refractive index, ratio of the nucleus over cytoplasm, and overall cell dimension.
Further quantitative phase-contrast reconstructions by DH were employed to calculate surface
area, dry mass, and biovolume of monocytes by using the OS outcomes as input parameters.
The results show significantly different biophysical cell properties, confirming the possibility
to differentiate monocytes from other cell classes in flow, thus avoiding chemical cell staining
or labeling, which are nowadays used.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The human blood cell pool is divided into two main classes, the so-called erythrocytes (or red
blood cells) and the white blood cells (WBC). Erythrocytes represent 99.9% of blood stream
cells and can be assumed to be biconcave shaped and deformable cells with no nucleus,
fulfilling the task of carrying vital gases in and out from every tissue of the body [1]. On the
other hand, WBCs are a complex, heterogeneous and widespread group of cells, which are
responsible for the maintenance of the body health [2]. Moreover, WBCs can be distinguished
in cells with or without granules. Neutrophils, basophils and eosinophils belong to the cells
with granules, while lymphocytes and monocytes are composed without [3].

The screening of morphometric cell properties (shape and inner structure) has recently
shown to give important information to distinguish fractions of cell classes and/or states,
especially when dealing with sparsely present cells [4—8]. Additionally, in case of disease, a
significant change of cell morphology can occur, which require a fast and complete
morphometric single cell screening with the final goal to identify pathologic from
physiological cells [9]. For instance, the changes of the relative monocyte amount in the
peripheral human blood, lower or higher than physiologic one, as well as anomalous cell
shapes or cytoplasm complexity can be indicative for dysregulated responses to inflammation
stimuli [10,11]. This is evident when dealing with chronic inflammations, which can be
related to serious systemic pathology [12,13]. Moreover, it is well known that in the case of
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tumoral monocyte diseases (such as leukemia), significant morphometric and optical cell
modifications occur [14]. However, physiological monocytes are sparsely present in
peripheral blood, and noticeably favor to adhere and aggregate compared to other WBCs,
making their single cell investigation challenging [15]. Therefore, a great number of
biophysical monocyte properties -using more than one coherent imaging tool- would
substantially enhance the identification of specific cell states.

Over the past two decades, a lot of research groups provided novel and accurate strategies
to investigate cells, considering either camera-based flow cytometry system [4-8] or
technologies using 3D label-free quantitative phase imaging (QPI) [16-21]. In general, such
approaches have both in common a high-throughput modality [19-23] and the possibility to
analyze cells in their physiological conditions using microfluidic systems [4—7,24-26].
Recently, an innovative microfluidic device, able to provide a viscoelastic 3D particle
alignment and coherent imaging, has been demonstrated for polystyrene microspheres [27]
and blood samples [28-31]. In particular, as shown in Ref. 28, a simple and fast method to
obtain biophysical properties of individual living peripheral blood mononuclear cells (PBMC,
i.e. lymphocytes and monocytes) in a microfluidic based measurement system has been
demonstrated. In these experiments, the amount of some cells showing a dimensional range
fitting with monocytes were observed. However, the throughput of investigations guaranteed
the analysis of few hundreds of PBMC, making a statistical monocyte characterization
challenging. Therefore, a robust investigation of monocytes is still needed, considering their
low amount in (potentially) a million blood cells.

In this paper, we report a straightforward label-free way to characterize monocytes in
flow, using the joint action of optical signature (OS) recognition by pure light scattering [27—
32] and digital holography (DH) in microscopy [25,26,33-35]. In particular, OS of 3D
viscoelastic aligned individual cells were acquired by scattering measurements, and QPI
reconstructions by DH were used to track cells in flow and further investigate them along a
microfluidic channel, allowing the full morphometric characterization of monocytes. The OS
of living cells were investigated using an adequate simulation model, based on a coated-
sphere with different biophysical cell properties such as cell dimension (d.), refractive index
(n) and ratio of nucleus over cytoplasm (n/c-ratio). Direct matching of experimental results
with simulation data were used to obtain an efficient detection of individual living cells and
further used as input parameters for DH investigations. In fact, the holographic 3D tracking
framework [36,37] was used to investigate the precise axial position of a single cell in the
viscoelastic microfluidic flow and to calculate further biophysical cell properties such as the
surface area (S), ellipticity (E), biovolume (V) and dry mass (DM). The joint combination of
both coherent imaging techniques allowed to label-free investigate single living monocytes in
flow at high accuracy.

2. Materials and methods
2.1 Samples preparation

For monocyte measurements in their native conditions, 30mL of peripheral human blood
were taken from a healthy male donor by standard venipuncture procedure and stored in
K,EDTA tubes (BD, VACUTAINER) to avoid possible physiological coagulation
phenomena. The sample was taken after obtaining informed consent from the donor in
accordance with the relevant guidelines and regulations. Within 30 min after the donation, the
blood volume was treated for cell extraction with a density gradient polymer separation
approach. Afterwards, the blood volume was diluted 1:1 with phosphate-buffered saline
(PBS, EUROCOLNE) and laid on an equal volume of a certain density medium (Ficoll,
SIGMA-ALDRICH) in standard 50mL plastic tubes. Afterwards, the sample was centrifuged

at 250 § for 30 min without using the machine brake. Subsequently, the resulting PBMC
ring was collected using a standard pasteur pipette and washed twice with RBC lysis solution
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to eliminate possible erythrocyte contaminations of the sample. As a next step, monocytes
were isolated by a negative selection procedure with specific Ab-coupled magnetic beads
(Dynabeads Untouched kit, INVITROGEN) and suspended in a viscoelastic 3-D alignment
solution, consisting of polyethylene oxide (PEO — M,, = 4 MDa, SIGMA-ALDRICH) diluted
in PBS. Figure 1(a) illustrate the cell class separation procedure.

We analyzed the isolation accuracy of monocytes (CD14-PE) versus lymphocytes (CD3-
FITC & CDI19-FITC) using a commercial flow cytometer (CyFlow SPACE, SYSMEX-
PARTEC), where more than 94% of monocytes were positively detected by Ab-labeling (data
not shown). Also, it can be seen from the scattering plot in Fig. 1(b), that monocytes (red)
show significantly bigger forward and side scattering intensity values compared to
lymphocytes (gray).
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Fig. 1. Monocyte isolation procedure and flow cytometer measurement. (a) The three-step
isolation procedure of monocytes from whole blood is illustrated. At the first step a gradient
separation with ‘Ficoll” was performed. The obtained PBMC ring is taken and suspended in
PBS. Magnetic Ab-beads are added in the second step. Afterwards in the third step a magnet
retains the bound content to the falcon tube surface, while monocytes remain free in the
suspension to analyze. (b) Flow cytometer control of isolated monocytes (red) and added
lymphocytes (gray), where two distinct zones are noticed. Monocytes show significant bigger
forward and side scattering intensity values compared to lymphocytes.

Before the experiment, cells were observed with a standard bright-field microscope (100x
oil immersion objective, X81, OLYMPUS) to ensure the vitality and the maintaining of the
physiological state of the cells in the viscoelastic measurement solution, see Fig. 2(a).
Moreover, cell vitality was tested before (Fig. 2(b)) and after each measurement (Fig. 2(c)),
using a standard ‘Trypan blue test’ approach (20 X objective, BX53, OLYMPUS), showing
satisfying results. Furthermore, a portion of monocytes has been fixed in 4%
paraformaldehyde and subsequently the nucleus was stained with ‘Sytox Green’
(THERMOFISHER), while the cytoplasm membrane was stained with ‘Wheat Germ
Agglutinin’ (THERMO SCIENTIFIC, alexa fluor 488 conjugated). A z-stack of such a
monocyte was acquired with a standard confocal microscope (LSM 710, ZEISS) and
reconstructed in ImageJ to generate a 3D (Fig. 2(d)) and a single section (Fig. 2(e)) image,
showing the typical monocyte shape and height of the nucleus as well as cytoplasm.
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Fig. 2. Monocyte observations. (a) Bright-field observation with 100x oil immersion objective
of monocytes in 0.2g dL™' PEO-PBS. Trypan blue investigations with a 20x objective in color
before (b) and after (c) cell measurements. (d) 3D reconstruction of confocal fluorescent z-
stack images (ImagelJ: plugin/Stacks - Z-functions/360- 3D project... Macro). (e) Confocal
image of one slide of the fluorescent z-stack. (Green color shows the ‘Wheat germ Agglutinin’,
while red color indicates the ‘Sytox Green’)
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2.2 Experimental setups and methods

We designed a microfluidic device, where precise 3D-cell alignment takes place in a round
shaped capillary (radius r, = 25um), mainly induced by a pressure driven viscoelastic
polymer (PEO) and the capillary geometry, before cells are forced to pass into a highly
transparent squared shaped measurement channel having a wider cross section of 500x500
pm. The measurement channel is fully sealed by a soft ferrule, through which the alignment
capillary can simply pass into the squared channel. The other end of the alignment capillary is
immersed in the cell sample. In fact, by applying a certain pressure on the sample, cells are
constantly pushed through the whole microfluidic system, changing the viscoelastic forces of
the medium and cell velocities according to the different cross sections of capillary and
measurement channel. Notice that the centerlines of capillary and channel are collinearly
placed, and no cell deformation was observed in the measurement channel.

However, we took advantage of viscoelastic cell migration effects in a capillary to align
cells before investigating them in a subsequent square shaped channel. The alignment
probability to the centerline of the capillary can be expressed by an adimensional parameter 0,
which can be written as [38]

0=+ (L/1.). 1

with a relaxation time 4, = 0.123ms of the viscoelastic polymer (PEO of 0.2g dL™") and
geometric parameters such as the confinement ratio S

B=d /2r. )

Moreover, the capillary length L = 0.3m as much as the average shear rate ;; of the solution,

ranging from 1154 to 2308s ™" is relevant for the alignment probability, where ;A/ is defined as

~

v=(APr)/(4n,L), 3)

with AP (1500-3000 mbar) defining the applied pressure (generated by a P-pump,
DOLOMITE) to push the sample through the capillary and 7, = 0.0054Pa-s the zero-shear

viscosity of the solution. In conclusion, a sufficient alignment condition exceeding 6>1 can be
simply achieved by an appropriate setting of all the previously mentioned parameters. At the
end of the round shaped capillary a 6 ranging from 16.7 until 33.4 was achieved for the
mentioned AP range.

By contrast, for the much wider cross-section in the successive measurement channel, the
f-ratio is not anymore fulfilled, by exceeding the defined maximal f value [38] of 10 and
strongly reduced cell velocity from 0.18ms™" in the capillary to 0.000058ms™" at the channel
(for AP = 1500mbar). In such a way, cells are less forced to stay on their track in flow and
sedimentation gravity force can act on them, as shown in Fig. 3(a). This implies a stronger
sedimentation influence for monocytes compared to other cell types, such as erythrocytes,
according to their different biophysical properties.



Research Article Vol. 9, No. 11| 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5198 I

Biomedical Optics EXPRESS -~

(a) Capillary Channel (b)

_—

alignment & monocy yo 1

=L

f* °
L I T
o

X
i

ical
31| | Optica

axis

e 4 o,
Flow- —»
direction

Fig. 3. (a) Viscoelastic alignment of monocytes in flow. The alignment takes place in a narrow
round shaped capillary, before sedimentation forces can act in the aligned cells in wide squared
shaped microfluidic channel. The entrance of the channel where scattering measurement have
been performed is indicated by xj, while 15 mm (1) downstream a second measurement
position x; indicates the position, where DH observation have been performed. (b) Simulation
model is illustrated; the indices n, ¢ and / are used for nucleus, cytosol, and extracellular liquid,
respectively. The nucleus is assumed to be in the center of the cell.

The scattering measurements has been investigated directly at the entrance of the
measurement channel (x;), where monocytes are assumed to be perfectly 3D-aligned and
sedimentation effect is not relevant. On the contrary, DH observations have been performed
after a distance / = 15mm in flow-direction (x;), to investigate the axial position (z-direction)
of investigated monocytes.

For OS investigations cell were simulated with a free available discrete dipole
approximation (DDA v1.3b4) approach. Such a cell model approximates the scatterer by a
lattice of dipoles, where the dipole number strongly depend on d., n and the numerical
accuracy of the simulation itself. Hereby each individual dipole has an oscillating polarization
in response to both the incident plane wave and the electric field [39]. However, the used cell
model is based on a coated sphere, where the inner sphere is representing the nucleus of a cell
and is assumed to be in the center of the overall model (see Fig. 3(b)). We used n-values of
1.33169 for the cell surrounding medium (#;) and alternating values spanning from 1.36 to
1.48 for the nucleus (n,) as well as the cytoplasm (n.) of the cell, using a step size of 0.01.
Only the real parts of the n-values were used for simulations, by considering that light
absorption of the cell can be neglected. The n/c-ratio (nucleus dimension over full cell
dimension) was alternated from 0.5 to 1.0 with a step size of 0.025 for best possible matching
accuracy, while a wide range of d -values with a step size of 0.1um was considered for un-
polarized incident light.

We used a wide-angle (2-30°) static light scattering apparatus (A = 633 nm), to obtain
precise OS of monocytes in flow (Fig. 4(a)). The small angular resolution of 0.1022° allows
us to distinguish morphometric cell characteristics within the sub-micrometric range, in a
non-destructive and label-free way, at throughput rates up to 50 cells per second. In general,
the incident light passes the microfluidic device from below, striking, one by one, target cells
aligned in the centerline of the measurement channel. The OS of each individual cell is
collected and mapped on the camera sensor by two lenses in series, while the incident light is
blocked by a beam stop.

DH measurements were performed with a classical off-axis arrangement in transmission
mode (A = 532 nm), with a 50 x long distance objective (Fig. 4(b)), such as reported
elsewhere [25,26]. The light source is divided into an object beam and a reference-beam. The
object-beam impinges on the sample before being collected by an objective and combined
with the reference beam. QPI reconstructions can be used to measure biophysical properties
of monocytes, thus, each optical axis position (see top-right inset in Fig. 4(b)), recovered for
the cell tracking, is used to reconstruct the corresponding DH in the image plane. Then, we
calculate the corresponding phase-contrast image. An example of such reconstructions is
reported as the bottom-right inset in Fig. 4(b). Notice that, it would be possible to obtain
numerically light scattering maps from QPI images. This approach is known as Fourier
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transform light scattering [40—42]. In order to do that, it is necessary, as first step to measure
the scalar electric field at the image plane. Thus, as second step, it would be necessary to
numerically propagate it to the far field using the Fourier transform, as demonstrated by in-
line holographic measurements in a previous research [41,42]. However, we cannot employ
efficiently this approach in our holographic measurements, since the flowing monocytes are
located in different axial positions each other, thus hindering the recording in the image plane,
as specified above. Moreover, the signal sampling, phase reconstruction, and unwrapping
process are not robustly performed far from the image plane, where high-frequency
interference patterns and phase discontinuities may occur [40]. For all experiments, bright-
field microscope observations of the measured cells were taken before and after each
experiment, showing a good preservation of the physiological monocyte state during the
measurements without structural anomalies. As also reported in previous works [28-31], we
can assume that during our short measurement times, the physiological cell state is not
affected by the viscoelastic alignment solution, allowing non-invasive investigations of living
cells.
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Fig. 4. Schematic illustration of the OS- and DH-setup for monocyte investigations. (a)
Illustration of the light scattering setup, where the incident light passes the microfluidic device
from below, striking, one by one, monocytes aligned in the centerline of the measurement
channel. The OS of each individual cell is collected and mapped on the camera sensor by two
lenses in series, while the incident light is blocked by a beam stop. Moreover, the round shaped
capillary for the cell alignment, the square shaped measurement channel as well as the ferrule
which connect both microfluidic parts are indicated. The inset of LSP of a single monocyte is
reported. (b) A sketch of the holographic setup is shown, where the incident light source is
split into an object- and reference-beam by a beam-splitter. The object-beam strikes passing
monocytes before both beams are simultaneously collected by the camera sensor. (c)
Microfluidic device combined with the coherent imaging approach of OS (position x,) and DH
(position x,) is shown.

3. Results and discussion

We tested our platform for 349 monocytes applying different flow rates. Cells were diluted in
0.2g dL™" of PEO-PBS to reach a final concentration of approximately 50 cells pl™'. OS and
DH measurements were jointly performed with sample volumes of about 100uL and an
applied AP value of 2000 mbar for OS measurements and varying AP values for DH
measurements (1500, 2000, 2500 and 3000 mbar). To investigate cells in flow via pure light
scattering, we obtained OS of each investigated cell over the available scattering range to a
continuous light scattering profile (LSP). Afterwards, we matched LSP outcomes with the
best-fitting pre-calculated cell simulations to obtain individual biophysical cell properties. All
obtained results were measured at a fixed channel position x,, where stable 3D cell alignment
was ensured. In Fig. 5(a) we report a typical monocyte outcome with the best matching
simulation curve overlaid in black. Such LSP curve was calculated out of the OS image
represented in Fig. 5(b). Hereby each concentric ring of high intensity values corresponds to
an oscillation peak in the LSP of Fig. 5(a). More detailed information about the LSP
calculation can be found elsewhere [27]. In Fig. 5(a), a reduced scattering intensity in the
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middle of the image can be noticed, due to the presence of the beam stop in the OS setup.
Moreover, from 5° to 8° saturation effects are present, caused by the camera sensor, resulting
in a significant matching discrepancy of experimental and simulated data. On the other hand,
the discrepancies of the LSP minima between experimental and simulation data are due to
physiological variances of the cell morphology, which the simulation model does not predict.
Nevertheless, a good LSP matching using a coated-sphere simulation model was observed.

From DH measurements we first investigated, cell positions in the optical axis direction at
measurement point x;, using the Tamura’s metric as holographic refocusing criterion [36].
Second, the quantitative phase map reconstruction of each focused monocyte (see Fig. 5(d))
was performed. Caused by the different cell velocities (AP from 1500 to 3000mbar) and
forces acting on monocytes in the alignment capillary and measurement channel, a selective
cell displacement differentiation in flow was observed in x;, as summarized in Fig. 5(c).
Results indicated for decreasing cell velocity, higher optical axis shifts and vice-versa. Such
results confirm previous PBMC investigations of our working group [28].
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Fig. 5. (a) LSP of monocyte measurement and overlaid simulation curve is shown. (b) The
corresponding OS image recorded by the camera sensor is illustrated. (c) Optical axis results of
monocytes investigated in measurement position x;. An increased cell displacement from the
initial optical axis position (z = 0) is observed for decreasing AP values and vice-versa. (d)
Phase-contrast image of a typical monocyte investigated in flow is shown. The inset shows
detected nucleus content.

The proposed collaborative coherent imaging techniques permit to achieve the direct
measurement of several biophysical properties of monocytes in flow. In particular, OS
measures open up the possibility to directly achieve the cell dimension and the n/c-ratio of a
passing cell assuming along with their total refractive index. Thereby all outcomes are
retrieved from the unique simulation parameters used for the best matching simulation.
Notice that the simulation curve database is made of more than 50 000 items. Cell matching
results are reported in Tablel. Beyond, the DH images measure the phase shift data A,
defined as [34]:

2n
A(P(X,Y)=T[n(x’y)_n/]t (4)
where (x,y) are the pixel coordinates, A the laser wavelength, n(x,y) is the cellular, n; of the
surrounding medium refractive index and ¢ is the cell thickness. Notice that to evaluate
features of a cell, such as for example its biovolume or its #,, a decoupling method, able to
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discard between n-value information from the thickness in Eq. (4) is needed. Different
methods have been proposed to simultaneously measure n-values and the sample thickness by
adopting a sequential perfusion of two isotonic solutions with different n-values [40], or
employing optical manipulations stages with optical tweezers [18].

However, in our experiment we cannot optically manipulate cells or change the culture
medium, thus we cannot directly measure such parameters. In this case, we use the results
obtained from OS measurements, i.e. the average measure of the cell n-value ngg, as input for
the calculation of cell volume (V). In our case, a n. of 1.360 and 7, of 1.389 were obtained.
Definitively, V' can be measured from QPI by using the following equation:

A .
V=—"—"—06S (5
2T':(nos _n1)

where surface area (S) and the average phase value q?) are defined as:

§=Kp* (6)

L1 K
o= EZ L Ag, (7)

in which K is the total number of pixels within a cell, p denotes the pixel size in the
reconstruction image plane and Ag; is the phase value of each pixel within the monocyte.
Notice that S, as well as V, cannot be measured directly from the OS data. In addition, QPI
can be used to measure other two biophysical characteristics of monocytes, i.e. the ellipticity
(E) and the dry mass (DM), defined as:

E = amin /amax (8)
10A

DM =——6S 9
P ®

where a,,;, and a,,,, are the minor and the major axis length of the monocyte, respectively, and
a=0.2mL g™ is known as the specific refractive index increment [40].

By using OS outcomes and Egs. (5)-(9) from DH data, we were able to fully characterize
monocytes in flow in terms of their biophysical properties. Table 1 reports measured
biophysical monocyte parameters for DH and OS as well as literature values. Our outcomes
of cell dimension are in good agreement with literature values, even if a profound comparison
of all the other biophysical cell properties is challenging due to the lack of data. Compared to
lymphocytes [28] a significantly bigger d. value and smaller n, as well as n/c-ratio has been
detected, allowing an accurate label-free cell identification in flow.

Table 1. Biophysical monocyte properties from collaborative OS and DH imaging
technique for AP of 2000 mbar and 0.2 g¢ dL”' PEO-PBS as well as literature values.

Technique: d, (um) nos n/c-ratio S (um?) E V(um®) DM (pg)
oS 9.57 1.383 0.784 — — —
+1.02 +0.006 +0.03
DH — — — 71.96 0.917 482.42 87.99
+12.54 +0.036 +57.94 +19.09
Doowney et al. [43] 8.13
Inglis et al. [44] 10.40

Loiko et al. [45] 9.87 1.370
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4. Conclusion

We investigated individual monocytes in a microfluidic-based measurement system with the
aim to fully characterize their morphometric and optical properties, and to track their position
in flow in a label-free modality. For this purpose, we employed two coherent imaging
techniques, i.e. OS and DH. All results were obtained at two fixed measurement positions, the
first one selected close to the exit of the capillary (x)) to ensure the stability of 3D cell
alignment without any effect of cell deformation, a necessary condition for the accuracy of
OS measurements; the second one placed far from capillary (x;) to study the cell position
variations as a function of flow pressure, through holographic tracking [36]. Both imaging
modalities were able to provide a label-free investigation of monocytes, thus allowing a
comparison among them. The possibility of investigating monocyte shape with high
resolution offers interesting opportunities for their characterization and quantification.
Consequently, a clear identification of the monocyte state can be assured, as a hint for better
comprehension of possible pathologic conditions. The proposed microfluidic approach
confirms the precise 3D alignment for different applied cell velocities, as observed in our
previous study [28,31] In addition, by comparing the current results with those reported in ref
[28,31], a label-free way to differentiate and fully characterize lymphocytes, monocytes and
erythrocytes in vertical downstream flow may be realistic and it will be investigated in future
works.
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